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Abstract
Analytical formulae for functional differentiation under simultaneous
K-conservation constraints, with K the integral of some function of the
functional variable, are derived, making the proper account for the simultaneous
conservation of normalization and statistical averages, e.g., possible in
functional differentiation in nonvariationally built physical theories, which gets
particular relevance for nonequilibrium, time-dependent theories.

PACS numbers: 02.30.Sa, 02.30.Xx, 05.10.−a, 46.15.Cc

Functional differentiation appears as a basic constituent of physical theories ranging from
hydrodynamics to quantum field theories [1]. In many of the cases, constraint (C[ρ] = 0), for
example the conservation law of some extensive property, limits the possible changes described
by the given physical theory, which leads to a potential shift of the functional derivative (that
governs the changes to first order) from its unconstrained form δA[ρ]

δρ(x)
in the physical equation.

The shift appears in the form of a ‘Lagrange multiplier’ µ (a multiplier constant in x, which
becomes the Lagrange multiplier at the extrema of A[ρ] with the constraint),

δA[ρ]

δρ(x)
− µ

δC[ρ]

δρ(x)
, (1)

with µ only partly (and implicitly) determined by the physical equation and the constraint, apart
from the case of an Euler–Lagrange equation. A general (that is, independent of the physical
problem the given constrained derivative appears in), explicit analytical determination of
multipliers µ becomes important with respect to (primarily, time-dependent, nonequilibrium)
physical theories where the physical equations do not emerge, at least not directly, variationally,
from some variational theorem, as functional derivatives. However, the method of that
treatment of constraints had not been known until recently, as a consequence of which
the account for constraints had been possible only in a direct variational way even in
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nonstationary problems [2], limiting the construction of practical physical theories with
constraints. In [3, 4], for the important class of constraints∫

f (ρ(x)) dx = K (2)

(where f is an invertible function, and an explicit x-dependence of f is allowed as well,
though not denoted for simplicity), an analytical formula for constrained derivatives,
equation (1), has been derived:

δA[ρ]

δKρ(x)
= δA[ρ]

δρ(x)
− f (1)(ρ(x))

K

∫
f (ρ(x ′))

f (1)(ρ(x ′))
δA[ρ]

δρ(x ′)
dx ′, (3)

giving a treatment of functional differentiation under conservation constraints including the
simple normalization conservation

∫
ρ(x) dx = N , the conservation of statistical averages∫

g(x)ρ(x) dx = L (4)

(that is, linear constraints L[ρ] = L, with L[δ(x ′ − x)] = g(x)), or entropy conservation,∫ −kρ(x) ln ρ(x) dx = S, e.g. Very recently, this constrained differentiation has been applied
by Clarke [5] to build a dynamical model of simultaneous dewetting and phase separation in
thin-film binary mixtures [6], through the proper account for conservation constraints. The
use of equation (3) and of the method behind it, however, is limited, being applicable only for
one constraint on a single functional variable. In the physical areas where an explicit handling
of constrained functional derivatives can be of particular relevance, there may be more than
one simultaneous conservation requirement constraining the variation of functional variables,
as in statistical physics [7] or in the physics of complex systems (e.g., in liquid film dynamics
[8]); so the extension of the idea of the formula (3) is essential for its general physical use.
In this paper, the generalization of equation (3) for functional differentiation under multiple
K-conservation constraints, embracing simultaneous conservation of normalization and some
statistical average, e.g., will be set up.

The extension of equation (3) is not trivial, as the successive application of two
K-conserving projection operators p̂K1 and p̂K2 , defined by p̂K(x, x ′)h(x ′) =∫

dx ′ δρ(x)

δKρ(x ′)h(x ′), does not yield a (K1,K2)-conserving projection, that is, p̂K1,K2 �= p̂K1 p̂K2 ,
meaning that p̂K1 p̂K2δρ is not a (K1,K2)-conserving first-order variation. (p̂K1 and p̂K2 do not
even commute.) To obtain a formula for (K1,K2)-conserving (or -constrained) differentiation,
the definition of K-constrained derivatives described in section 4 of [9] will be taken as basis.
In [9], it has been pointed out that δA[ρ]

δKρ(x)
emerges as the unconstrained derivative of the

degree-zero K-homogeneous extension of A[ρ] for ρK(x ′) (that is, a ρ(x ′) of equation (2)),

δA[ρ]

δKρ(x)
= δA

[
ρ0

K [ρ]
]

δρ(x)
, (5)

following from two essential conditions, namely, (i) the derivatives of two functionals that
are equal over a (K-) restricted domain should also be equal over that domain (K-equality
condition), and (ii) for K-independent functionals the K-constrained derivative should be
identical with the unconstrained derivative (K-independence condition). This, for two
K-constraints, gives

δA[ρ]

δK1,K2ρ(x)
= δA

[
ρ0

K1,K2
[ρ]

]
δρ(x)

, (6)

if ρ0
K1,K2

[ρ], which is an extension of ρK1,K2 that is both K1-homogeneous and K2-
homogeneous of degree zero, exists.
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For two simultaneous linear constraints, equation (4), however, the above idea gives an
insufficient basis for the derivation of a constrained differentiation formula, since the extension
from ρL1,L2 of degree-zero homogeneity (to which degree-zero L-homogeneity reduces) is not
unique, the extensions ρ0

L1,L2
[ρ] = ρ(x) Li∫

gi (x ′)ρ(x ′) dx ′ (i = 1, 2), e.g., both being homogeneous

of degree zero. The problem with the nonunique ρ0
L1,L2

[ρ] is that it cannot generally yield

a (L1, L2)-constrained derivative formula as
∫ δA

[
ρ0

L1 ,L2
[ρ]

]
δρ0

L1 ,L2
[ρ](x ′)

δρ0
L1 ,L2

[ρ](x ′)
δρ(x)

dx ′ generally does not

fulfil the most substantial requirement, the K-equality condition, for a δA[ρ]
δL1 ,L2 ρ(x)

. The formulae

arising from the two ρ0
L1,L2

[ρ]s mentioned as examples above even contain only one term

instead of two, accounting for the two constraints: δA[ρ]
δL1 ,L2 ρ(x)

= δA[ρ]
δρ(x)

− gi (x)

Li

∫
ρ(x ′) δA[ρ]

δρ(x ′) dx ′,
which gives just the L-constrained derivative formula. The reason for that problem is a kind
of degeneracy, namely, the variation of a ρ0

L1,L2
[ρ] that is L1- and L2-independent (which

reduces to a simple N-independence) is not necessarily left unrestricted by the (L1, L2)-
constraint, contrary to the case of a single constraint on the functional variable. This can be
seen in the case of ρ0

N,L[ρ] = ρ(x) N∫
ρ(x ′) dx ′ , e.g., in the following way. That on the variation

of this ρ0
N,L[ρ], the constraint equation (4) alone does not yield any restriction is due to the fact

that equation (4) allows any ρ(x)∫
ρ(x ′) dx ′ but with different

( ∫
ρ(x) dx

)
s in general, which means

that with the addition of the constraint
∫

ρ(x) dx = N , the variation of ρ0
N,L[ρ] becomes

limited.
In spite of the above degeneracy, and actually, for that very reason, the account for

simultaneous linear constraints in functional differentiation can be solved (in general), through
following the original way [3,4] to obtain a K-conserving differentiation formula, the basis of
which was to find an extension ρ∗

K [ρ] (or decomposition, being a matter of approach) that (i)
reduces to ρK(x) for ρK(x) and (ii) fulfils∫

f (ρ∗
K [ρ](x)) dx = K (7)

for any ρ(x) (which is a more restrictive condition than degree-zero K-homogeneity). Note
that those conditions do not yield a unique ρ∗

K [ρ] in the case of linear constraints, since any

ρ∗
L[ρ](x) = ρ(x) − u(x)

g(x)

(∫
g(x ′)ρ(x ′) dx ′ − L

)
, (8)

with a u(x) that integrates to 1, satisfies them (giving the general form (25) in [9], which fulfils
only the K-equality condition); however, with the requirement of degree-zero K-homogeneity
(that is, simply homogeneity for K = L), the ambiguity disappears, ρ∗

L[ρ] becoming ρ0
L[ρ]

(with u(x) = g(x)ρ(x)∫
g(x ′)ρ(x ′) dx ′ ). For two linear constraints, to find an extension ρ∗0

L1,L2
[ρ] that

fulfils the 2+1 conditions is a somewhat more difficult task than in the case of a single
constraint. It can be solved with the introduction of a function σ(x) that integrates to zero:

ρ∗0
L1,L2

[ρ](x) = ρ(x)
L1∫

g1(x ′)ρ(x ′) dx ′ − σ(x)/g1(x)∫
g2(x ′)
g1(x ′) σ (x ′) dx ′

×
(

L1∫
g1(x ′′)ρ(x ′′) dx ′′

∫
g2(x

′′)ρ(x ′′) dx ′′ − L2

)
. (9)∫

g2(x)

g1(x)
σ (x) dx has to be nonzero and σ(x) may have a ρ(x) dependence (e.g., some

homogeneous ρ(x)-dependence) that gives a degree-zero homogeneous σ(x)
/∫

g2(x
′)

g1(x ′) σ (x ′) dx ′ in ρ(x); otherwise σ(x) can be arbitrary. In equation (9), the indices 1
and 2 can be interchanged, yielding an equivalently appropriate extension. Equation (9),
through equation (6), leads to the (L1, L2)-conserving differentiation formula
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δA[ρ]

δL1,L2ρ(x)
= δA[ρ]

δρ(x)
− g1(x)

L1

{∫
ρ(x ′)

δA[ρ]

δρ(x ′)
dx ′ − L2∫

g2

g1
σ

∫
σ(x ′)
g1(x ′)

δA[ρ]

δρ(x ′)
dx ′

}

− g2(x)∫
g2

g1
σ

∫
σ(x ′)
g1(x ′)

δA[ρ]

δρ(x ′)
dx ′. (10)

Note that a term + σ ′(x)

g(x)
ξ
(∫

g(x ′)ρ(x ′) dx ′ − L
)
, with an arbitrary function ξ for which

ξ(0) = 0, can also be added to the extension (8), but without any effect on the form (25)
in [9] arising from equation (8). It may be mentioned that with the choice

σ(x) = g1(x)ρ(x)

L1
− δ(x − x0), (11)

equation (10) reduces to

δA[ρ]

δL1,L2ρ(x)
= δA[ρ]

δρ(x)
− g2(x)

L2

∫
ρ(x ′)

δA[ρ]

δρ(x ′)
dx ′ (12)

if g2(x0)

g1(x0)
= 0 and 1

g1(x0)

δA[ρ]
δρ(x0)

= 0. An essential property of δA[ρ]
δL1 ,L2 ρ(x)

given by equation (10) is

that multiplied by ρ(x) or by σ(x)/g1(x), it integrates to zero.
A more general necessary form for (L1, L2)-constrained derivatives, coming from the

extension

ρ∗
L1,L2

[ρ](x) = ρ(x) − σ1(x)/g2(x)∫
g1(x ′)
g2(x ′) σ1(x ′) dx ′

(∫
g1(x

′)ρ(x ′) dx ′ − L1

)

− σ2(x)/g1(x)∫
g2(x ′)
g1(x ′) σ2(x ′) dx ′

(∫
g2(x

′)ρ(x ′) dx ′ − L2

)
(13)

(relaxing the homogeneity requirement), is

δA[ρ]

δ′
L1,L2

ρ(x)
= δA[ρ]

δρ(x)
− g1(x)∫

g1

g2
σ1

∫
σ1(x

′)
g2(x ′)

δA[ρ]

δρ(x ′)
dx ′ − g2(x)∫

g2

g1
σ2

∫
σ2(x

′)
g1(x ′)

δA[ρ]

δρ(x ′)
dx ′, (14)

with σ1(x) and σ2(x) being arbitrary functions that integrate to zero and
∫

g1(x)

g2(x)
σ1(x) dx �= 0

(and 1 ↔ 2). The above formula is the most general one that fulfils the most essential
condition, namely, the K-equality condition (see above), for a K-constrained derivative, giving
back equation (10) with

σ1(x) = g2(x)ρ(x) − σ2(x)g2(x)/g1(x)∫
g2(x ′)
g1(x ′) σ2(x ′) dx ′

∫
g2(x

′)ρ(x ′) dx ′. (15)

Equation (13), with equation (14), also shows the way for the generalization for an
arbitrary number of simultaneous L-constraints:

ρ∗
L1,L2,...

[ρ](x) = ρ(x) −
∑

i

vi(x)

(∫
gi(x

′)ρ(x ′) dx ′ − Li

)
, (16)

giving

δA[ρ]

δ′
L1,L2,...

ρ(x)
= δA[ρ]

δρ(x)
−

∑
i

gi(x)

∫
vi(x

′)
δA[ρ]

δρ(x ′)
dx ′, (17)

with vi(x)s for which∫
gj (x)vi(x) dx = δji . (18)
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The construction of such vi(x)s will be described later, getting help from the derivation of the
formulae δA[ρ]

δ′
K1 ,K2 ,...ρ(x)

with general K-constraints.

For two simultaneous general K-conservation constraints, of which at least one is nonlinear
(more precisely, not homogeneous, as seen later), to derive a constrained differentiation
formula, a route based on equation (6) will be followed. As δA[ρ]

δK1 ,K2 ρ
is expected to be equal to

the unconstrained derivative of A
[
ρK1,K2

]
’s degree-zero K1- and K2-homogeneous extension,

A0
K1,K2

[ρ] (if that exists),∫
fi(ρ(x))

f
(1)
i (ρ(x))

δA[ρ]

δK1,K2ρ(x)
dx = 0 (19)

has to hold for all is, following from the corresponding relation for A0
K1,K2

[ρ] (see [9] for
details). Equation (19), utilizing

δA[ρ]

δK1,K2ρ(x)
= δA[ρ]

δρ(x)
− f

(1)
1 (ρ(x))µ1 − f

(1)
2 (ρ(x))µ2, (20)

then yields two equations for the two multipliers µi :∫
f1(ρ(x))

f
(1)
1 (ρ(x))

δA[ρ]

δρ(x)
dx = K1µ1 + K2(1)µ2 and 1 ↔ 2, (21)

with

K2(1) =
∫

f1(ρ(x))

f
(1)
1 (ρ(x))

f
(1)
2 (ρ(x)) dx and 1 ↔ 2. (22)

The solution of the two equations for µis yields

µ1 = 1

1 − K1(2)K2(1)/(K1K2)

1

K1

∫ {
f1(ρ(x ′))

f
(1)
1 (ρ(x ′))

− K2(1)

K2

f2(ρ(x ′))

f
(1)
2 (ρ(x ′))

}

× δA[ρ]

δρ(x ′)
dx ′ and 1 ↔ 2, (23)

which, inserted into equation (20), gives the formula for δ
δK1 ,K2

-derivatives. By construction,
δA[ρ]

δK1 ,K2 ρ
gives δA[ρ]

δρ
for functionals A[ρ] independent of K1 and K2. Equation (23) immediately

shows why the above formula cannot be applied for two K-constraints with homogeneous
fi(ρ)s (as a consequence of the degeneracy present in that case): for fi(ρ)s that are
fi(λρ) = λmi fi(ρ), K1(2) = m1

m2
K1 and 1 ↔ 2, which leads to a 1

0 in the expressions of
µis. (Note that in that case, only one equation (19) emerges.)

The extension of the above formula for more than two constraints is straight, on the
basis of the above method. However, for that extension, the more general form for (K1,K2)-
constrained derivatives that fulfils only the K-equality condition is worth taking as basis, giving
a general frame for all kinds of K-constraints. From the equality of the derivatives

δA[ρ]

δ′
K1,K2

ρ(x)
= δA[ρ]

δρ(x)
− f

(1)
1 (ρ(x))µ′

1 − f
(1)
2 (ρ(x))µ′

2 (24)

of two functionals A1[ρ] and A2[ρ] at a ρ(x) (which form a derivative on a (K1,K2)-restricted
domain has to have; see section 2 in [9]),

δA1[ρ]

δρ(x)
− δA2[ρ]

δρ(x)
= f

(1)
1 (ρ(x))

(
µ

′A1
1 − µ

′A2
1

)
+ f

(1)
2 (ρ(x))

(
µ

′A1
2 − µ

′A2
2

)
(25)
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follows. Searching for a linear differentiation operator δ
δ′
K1 ,K2

ρ
, equation (25), with the

introduction of two functions u1(x) and u2(x) that integrate to 1 and give 1 − K ′
1(2)K

′
2(1) �= 0

(see below), leads to∫
u1(x)

f
(1)
1 (ρ(x))

(
δA1[ρ]

δρ(x)
− δA2[ρ]

δρ(x)

)
dx = (

µ
′A1
1 − µ

′A2
1

)
+ K ′

2(1)

(
µ

′A1
2 − µ

′A2
2

)
and 1 ↔ 2, (26)

with

K ′
2(1) =

∫
u1(x)

f
(1)
1 (ρ(x))

f
(1)
2 (ρ(x)) dx and 1 ↔ 2. (27)

The solution of the two equations for
(
µ

′A1
i − µ

′A2
i

)
s then yields

µ′
1 = 1

1 − K ′
1(2)K

′
2(1)

∫ {
u1(x

′)

f
(1)
1 (ρ(x ′))

− K ′
2(1)

u2(x
′)

f
(1)
2 (ρ(x ′))

}

× δA[ρ]

δρ(x ′)
dx ′ and 1 ↔ 2, (28)

utilizing that the expression for µ′
i has to be the same for the two functionals. Equation (24)

with µ′
i determined by equation (28) is the generalization of equation (25) of [9] for two

K-constraints, and even for two general constraints Ci[ρ] = 0, with the replacement of
f

(1)
i (ρ(x)) with δCi [ρ]

δρ(x)
. It gives equations (20) and (23) with the choice

ui(x) = fi(ρ(x))∫
fi(ρ(x ′)) dx ′ , (29)

and with the transformation from functions ui(x) integrating to 1 to functions σi(x) integrating
to 0, via

u1(x) = σ1(x)
f

(1)
1 (ρ(x))

f
(1)
2 (ρ(x))

/∫
σ1(x

′)
f

(1)
1 (ρ(x ′))

f
(1)
2 (ρ(x ′))

dx ′ and 1 ↔ 2, (30)

it gives the formula that embraces equation (14).
Following a similar route as above for three constraints leads to

µ′
1 = 1

1 − K ′
1(2)K

′
2(1) − K ′

1(3)K
′
3(1) − K ′

2(3)K
′
3(2) + K ′

1(2)K
′
3(1)K

′
2(3) + K ′

2(1)K
′
1(3)K

′
3(2)

×
∫ {

(1 − K ′
2(3)K

′
3(2))

u1(x
′)

f
(1)
1 (ρ(x ′))

− (K ′
2(1) − K ′

2(3)K
′
3(1))

u2(x
′)

f
(1)
2 (ρ(x ′))

−(K ′
3(1) − K ′

3(2)K
′
2(1))

u3(x
′)

f
(1)
3 (ρ(x ′))

}
δA[ρ]

δρ(x ′)
dx ′ and 1 ↔ i (i = 2, 3). (31)

The essential property∫
ui(x)

f
(1)
i (ρ(x))

δA[ρ]

δ′
K1,K2,...

ρ(x)
dx = 0 (32)

holds generally, for arbitrary number of constraints. It can be observed that the multiplier of
δA[ρ]
δρ(x)

in µ′
i integrates to 1 if multiplied by f

(1)
i (ρ(x)), and to 0 if multiplied by f

(1)
j (ρ(x))

(j �= i), giving just vi(x) in equation (16) for linear constraints, hereby this method yielding
a general construction of vi(x)s for an arbitrary number of linear constraints. All ui(x)s in a
formula corresponding to non-homogeneous fi(ρ)s can be chosen as equation (29), fulfilling
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the K-independence condition (see the second paragraph), while only one of the ui(x)s
corresponding to homogeneous fi(ρ)s can so be chosen. It is worth underlining here that
setting up an extension ρ∗0

L1,...
of ρ is of relevance even with a derivation of the (L1, L2, . . .)-

conserving differentiation formula given without the use of it, as the method based on it can
be used in complex cases where the straight application of the formula equation (17) may not
be possible, namely, in the case of functional variables coupled by the constraints present; as
in the application of K-constrained differentiation given in [5], where though the problem of
the treatment of simultaneous constraints is avoided in the derivation [10] of the constrained
derivatives equations (7) and (8). [It is worth mentioning that the constrained derivatives
equations (7) and (8) in [5] can be obtained by the use of equation (3) (with K = L), that is, of
equation (17) (with one vi(x), v(x) = ρ(x)/L), as well, by applying it to the single-constraint
case of δFT

δKφA
, and taking into consideration that the multipliers of h(x) in equation (7) and

φA(x) in equation (8) in [5], corresponding to the same constraint, must be equal (the multiplier
accounting for the other constraint in equation (8) is irrelevant with respect to the considered
physical theory).]

To treat a time-dependent constraint (2),∫
f (ρ(x, t)) dx = K(t), (33)

as well, the above equations need to be modified slightly, replacing x with x, t and excluding t
from the integrations. All the formulae derived above, and in [3, 4], embrace the discrete case
of multi-variable functions, where the functional derivatives in the formulae become partial
derivatives with respect to the function variables, and the integrals become summations over
the variable indices, giving, e.g.,

∂h(
⇀

r)

∂Lri

= ∂h(
⇀

r)

∂ri

− li

L

⇀

r∇h(
⇀

r) (34)

for functions of spatial position with constraints
3∑

i=1

liri = L. (35)

As another important case of complex constraints, the constraint
n∏

i=1

∫
gi(x)ρ(x) dx = P (36)

is also worth considering, for which the extension

ρ∗0
L1L2...

[ρ](x) = ρ(x) n

√
P∏n

i=1

∫
gi(x ′)ρ(x ′) dx ′ (37)

leads to the proper
(∏

i Li

)
-conserving differentiation formula

δA[ρ]

δL1L2...ρ(x)
= δA[ρ]

δρ(x)
− 1

n

n∑
i=1

gi(x)

Li

∫
ρ(x ′)

δA[ρ]

δρ(x ′)
dx ′. (38)

Finally, it has to be noted that the K-constrained differentiation formulae presented in this paper
are valid not only with the unrestricted derivative δA[ρ]

δρ(x)
but also with the more generally existing

corresponding K-restricted derivative δA[ρ]
δρ(x)

∣∣∣
K1,K2,...

(as detailed in [9] for single constraints),

and that the derivatives can be both Fréchet and Gâteaux for linear K[ρ]s, while they are
Fréchet in the case of other K-constraints.
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In summary, the extension of K-conserving functional differentiation for an arbitrary
number of simultaneous constraints has been presented, completing the method that makes
it possible to account for constraints in functional differentiation in a nonvariational way in
physical theories.
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